
Automatic Formal Analyses of Cryptographic Protocols

Stephen H. Brackin �

Arca Systems, Inc.

ESC/AXS

Hanscom AFB, MA 01731-2116

Abstract

Cryptographic protocols are short sequences of mes-
sage exchanges intended to establish secure communi-
cation over insecure networks; whether they actually
do so is a notoriously subtle question. This paper de-
scribes results produced by a software tool for automat-
ically proving desired properties of protocols using an
extension of the Gong, Needham, Yahalom (GNY) be-
lief logic, if possible, and showing exactly what goes
wrong otherwise. The paper gives analyses of three
complicated SPX protocols, analyses that reveal serious
vulnerabilities. Keywords: Protocols; Authentication;
Automatic Analysis; Formal Methods.

1. Introduction

Cryptographic protocols are short sequences of mes-
sage exchanges intended to establish secure communi-
cation over insecure networks. Some do so. Others,
including ones recommended by experts, can be sub-
verted by attacks involving modi�ed, replayed, or mis-
labeled messages [5]. The basic issues are authentica-
tion (whether participants know who they are commu-
nicating with), and nondisclosure (whether information
is revealed to those not meant to receive it).

There are two main approaches to preventing pro-
tocol failure: attempting to construct possible attacks,
using algebraic properties of the algorithms in the pro-
tocols; and attempting to construct inferences, using
specialized logics based on a notion of \belief", that
protocol participants can con�dently reach desired con-
clusions.

�The author wishes to thank Shiu-Kai Chin, Grace Ham-
monds, Randy Lichota, and Jack Wool for their assistance. This

work was supported by Rome Laboratory and Air Force Ma-
teriel Command's Electronic Systems Center/Software Center

(ESC/AXS), HanscomAFB, through the Portable, Reusable, In-
tegrated SoftwareModules (PRISM) program, contractsF19628-
92-C-0006 and F19628-92-C-0008.

Attack-construction tools include Millen's Inter-
rogator [13, 15, 14] and Meadows' NRL Protocol An-
alyzer [10, 11, 12]. Inference-construction approaches
include the belief logics developed by Abadi and Tut-
tle (AT)[1], by Gong, Needham, and Yahalom (GNY)
[7, 6], and by Syverson and van Oorschot (SvO) [17].

Attack-construction tools address both authentica-
tion and nondisclosure, but su�er from a combinato-
rial explosion in the number of cases they must con-
sider. Belief-logic tools address only authentication,
but do not face a combinatorial explosion, are poten-
tially much faster, and are potentially capable of an-
alyzing large, complicated protocols that the attack-
construction tools are incapable of analyzing in a rea-
sonable time.

The tool whose results are presented here, the Au-
tomatic Authentication Protocol Analyzer (AAPA) uses
the belief-logic approach. It automatically proves theo-
rems, about a Higher Order Logic (HOL) formalization
of a belief logic extending the GNY logic, using HOL
proof tools [8]. For the HOL proof tools, whether a
claim is a theorem is determined by type checking in a
Standard ML (SML) [16] compiler. The correctness of
the theorems proved by the AAPA thus does not depend
on the correctness of the AAPA; it depends only on the
correctness of the HOL tools and the SML compiler,
which have been used and analyzed extensively.

The AAPA automatically translates between HOL
and a simple Interface Speci�cation Language (ISL) [4]
for describing protocols; the user need only know ISL,
not HOL.

The belief logic used by the AAPA grew out of the
GNY logic, as adapted by Gong to eliminate impossible
protocols [6], but it extends the GNY logic in several
ways. These extensions include the following:

� having explicit pairing and conjunction operators;

� describing protocol properties at intermediate pro-
tocol stages;

� modeling protocols that use Message Authentica-
tion Codes (MACs), i.e., key-dependent hash func-
tions;

� modeling protocols that use key-exchange func-
tions to generate shared secret keys;

� modeling protocols that use hash codes or other
computed values as keys;

� modeling protocols that use multiple public-key
or symmetric-key encryption functions, multiple
hash functions, and multiple key-exchange algo-
rithms.

Several of these extensions are necessary for analyzing
the protocols described in this paper, since these pro-
tocols use hash codes as keys and make essential use
of taking di�erent hashes of the same password. The
AAPA belief logic is described in [3].

It is also worth emphasizing that the original GNY
logic existed only on paper; proofs in it were con-
structed and checked by hand. The AAPA not only
gives a machine implementation of a logic, with highly
reliable machine checking of the accuracy of proofs, but
also constructs these proofs automatically. The AAPA
produced the results given in this paper in a matter
of minutes; doing much less, constructing machine-
checked proofs, by hand, took months [9].

The rest of this paper analyzes three SPX protocols
[18] using the AAPA. The paper only gives the basic
information needed to understand these analyses; see
[3, 2, 4] for complete descriptions of the AAPA's under-
lying HOL theory, its proof process, and the language
ISL.

2. SPX Credentials Initialization

An ISL speci�cation for the Credentials Initializa-
tion SPX protocol, taken almost verbatim from [18],
follows.

The process created by a new user logging in (C)
contacts the Login Enrollment Agent Facility (Leaf),
and sends it C's name, a timestamp, a random nonce,
and a hash of C's password, all encrypted with Leaf's
public key. Leaf contacts a Certi�cate Distribution
Center (Cdc1), which sends Leaf C's long-term private
key encrypted with a di�erent hash of C's password, the
hash of C's password that Leaf should have received,
and C's user-ID, all encrypted with Leaf's public key.
Leaf then sends C C's user-ID and C's long-term private
key encrypted with the di�erent hash of C's password,
all encrypted with the random nonce C just provided
to Leaf. From this, C is able to determine its own

long-term private and public keys. It then contacts
Cdc1 directly and obtains a certi�cate for the public key
for its Certifying Authority Ca1, with C's name, Ca1's
name, and the validity interval for this public key, all
signed by taking the data's hash with yet another hash
algorithm and encrypting the result with C's long-term
private key.

The protocol's ISL speci�cation follows standard no-
tation, uses intuitive terminology, and is largely self-
explanatory. The following descriptions of ISL con-
structs will su�ce for getting a reasonable understand-
ing of the protocol:

� The From construct on initial hash codes and en-
crypted values allows the AAPA to compute a pu-
tative source for each such value in the protocol;
it uses this to direct its proof process.

� {x}f(k) denotes x encrypted using function f with
key k.

� [x](f1,f2)(k) denotes x together with a signa-
ture produced by taking the hash of x using f1

and encrypting the result using f2 with key k.

� The || operator binds a statement to a data item,
as in the \extension" concept in the GNY logic
[7]. The protocol assumes that the principal orig-
inating this data item will not send it unless this
principal is con�dent that the statement is true.

� ISL accepts and ignores C-style comments.

The protocol's ISL speci�cation follows:

DEFINITIONS:

PRINCIPALS: C,Ca1,Cdc1,Leaf;

PUBLIC KEYS: KpC,KpCa1,KpLeaf;

PRIVATE KEYS: KsC,KsCa1,KsLeaf;

SYMMETRIC KEYS: Rn;

OTHER: PwdC,UidC,ValidityKpCa1,Ts;

ENCRYPT FUNCTIONS: Des,Rsa;

HASH FUNCTIONS: H1,H2,H3;

Des WITH ANYKEY HASINVERSE Des WITH ANYKEY;

Rsa WITH KpLeaf HASINVERSE Rsa WITH KsLeaf;

Rsa WITH KsC HASINVERSE Rsa WITH KpC;

INITIALCONDITIONS:

C Received

Des,H1,H2,H3,Rsa,C,PwdC,Ts,KpLeaf,Rn;

C Believes

(PublicKey Leaf Rsa KpLeaf;

SharedSecret C C H2(PwdC) From C);

Cdc1 Received

Rsa,UidC,KpLeaf,

H1(PwdC) From C,

{KsC}Des(H2(PwdC)) /* 1 */

||(PrivateKey C Rsa KsC) From C,

[C,Ca1,ValidityKpCa1,KpCa1](H3,Rsa)(KsC)

||(PublicKey Ca1 Rsa KpCa1) From C;

Leaf Received Des,Rsa,KsLeaf;

PROTOCOL:

1. C -> Leaf: {C,Ts,Rn,H1(PwdC)}Rsa(KpLeaf);

2. Leaf -> Cdc1: C;

3. Cdc1 -> Leaf:

{{KsC}Des(H2(PwdC)) /* 2 */

||(PrivateKey C Rsa KsC),

H1(PwdC),

UidC}Rsa(KpLeaf);

4. Leaf -> C:

{UidC,

{KsC}Des(H2(PwdC)) /* 3 */

||(PrivateKey C Rsa KsC)}Des(Rn);

5. C -> Cdc1: C;

6. Cdc1 -> C:

[C,Ca1,ValidityKpCa1,KpCa1](H3,Rsa)(KsC)

||(PublicKey Ca1 Rsa KpCa1);

GOALS:

4. C Possesses KpC,KsC;

C Believes

(PublicKey C Rsa KpC;

PrivateKey C Rsa KsC);

6. C Possesses ValidityKpCa1,KpCa1;

C Believes PublicKey Ca1 Rsa KpCa1;

The remainder of this paper will assume that this ISL
speci�cation is in a �le named spxinit.isl. Running
the AAPA on this �le gives the error message:

User-goal failure, stage: 4!

Goal statement: C Possesses KpC,KsC;

and produces �les spxinit.fail and spxinit.prvd

containing ISL descriptions of the failed default goals
and proved theorems. One of the theorems is C

Received KsC; so the problem is with KpC; the proof
rules embodied in the AAPA cannot prove that a public
key can be computed from the corresponding private
key. The assumption that this can be done is implicit
in [18]. The necessary machinery to allow the user
to specify that a public key is a function of the cor-
responding secret key is only partially present in the
AAPA.

This problem can be easily worked around by re-
placing KsC by KpC,KsC and

PrivateKey C Rsa KsC

by

PrivateKey C Rsa KsC; PublicKey C Rsa KpC

in the lines marked /* 1 */, /* 2 */, and /* 3 */.
This change causes the AAPA to give the error;

User-goal failure, stage: 4!

Goal statement:

C Believes

(PublicKey C Rsa KpC;PrivateKey C Rsa KsC);

The spxinit.fail �le now shows the failed default
goal

C Believes

(C Conveyed

{KpC,KsC}Des(H2(PwdC))

||(PublicKey C Rsa KpC;

PrivateKey C Rsa KsC));

The subgoal the prover is unable to prove is:

C Believes (C Recognizes KpC,KsC);

The goal asserts that C can be con�dent that the
keys (key, actually) encrypted with a hash of C's pass-
word really originated with C. The problem is that any
random value can be decrypted with a hash of C's pass-
word to produce another random value; how is C to
know whether the result is C's secret key, which looks
random itself? The failed subgoal says C can identify
the decrypted data as meaningful.

This might be a problem. In the real protocol, the
data represented abstractly here as KsC might have
some structure, or be encrypted with identifying in-
formation, so that a decrypted random value can be
recognized as meaningless, but the analysis here raises
the question for implementations of the protocol as to
whether they make such tests.

This new problem can be solved by putting iden-
tifying information, C's name, in with the encrypted
key(s), and adding the initial condition

C Believes C Recognizes C;

i.e., C can identify its own name as meaningful.
This change causes the AAPA to display the same er-

ror message that it displayed before, but spxinit.fail
shows di�erences; the top failed default goal is now:

[C Believes

(PublicKey C Rsa KpC;

PrivateKey C Rsa KsC;

C Possesses Des,H2(PwdC);

C Possesses C,KpC,KsC);

C Believes

(C Believes

(PublicKey C Rsa KpC;

PrivateKey C Rsa KsC;

C Possesses Des,H2(PwdC);

C Possesses C,KpC,KsC))]

and its waiting subgoals are

C Believes

(Fresh C,KpC,{KsC}Des(H2(PwdC))

||(PublicKey C Rsa KpC;

PrivateKey C Rsa KsC));

C Believes (Trustworthy C);

The two parts of this goal re
ect that if the belief
logic allows the recipient of a data item to believe the
properties that the protocol assumes this data item has,
then it also allows this recipient to believe that the orig-
inator of this data item also believes these properties.
The same hypotheses give both conclusions.

The second of the waiting subgoals, that C considers
itself trustworthy, is trivial and easy to add as an initial
condition. The �rst subgoal, though, re
ects a real
limitation in the GNY logic.

Following the GNY logic, the AAPA's belief logic does
not allow a protocol participant to believe a statement
that the protocol assumes is valid for a data item un-
less this participant has adequate reason to believe that
this data item was created for the current protocol run;
otherwise it could be a replay. In the current case, C's
encrypted private key was not created for the current
protocol run, but it has the properties that the proto-
col assumes it has. As long as the current PwdC is no
older than the current KsC, there is no way for a replay
to give C a stale private key. The theory's Fresh con-
struct, meaning \created for the current run", needs to
be generalized to \fresh enough", meaning \having the
expected properties for the current run".

This last problem can be solved by having C believe
that PwdC was created for the current run. It might
have been, after all, and this assumption accurately
re
ects that the critical issue is whether C's password
is too old.

Adding the initial conditions

C Believes (Fresh PwdC; Trustworthy C)

gets the AAPA past all the default and user-set goals
for stage 4. Now it encounters a problem similar to an
earlier one:

User-goal failure, stage: 6!

Goal statement:

C Believes (PublicKey Ca1 Rsa KpCa1);

Again, the problem is that data that was not created
for the current protocol run | KpCa1 | has to be
believed to have the properties the protocol assumes
for it. Adding the initial condition

C Believes Fresh ValidityKpCa1;

causes the AAPA to prove the all the user-set goals.
The analysis of the SPX Credentials Initialization

protocol reveals some de�ciencies in the GNY-based
formal theory underlying the AAPA, identi�es unstated
assumptions in [18], and identi�es a potential problem
| not checking whether the decrypted private key can
be identi�ed as being information of an expected form
| that the protocol's implementations might have.

3. SPX Authentication

Although it is more complicated, and roughly 50%
more di�cult to specify, the SPX Authentication pro-
tocol raises only issues similar to those raised by the
SPX Credentials Initialization protocol.

In this protocol, a claimant (C), already possessing
its own long-term public and private keys (KpC, KsC),
a pair of shorter-term session public and private keys
(KspC, KssC), and the public key (KpCa1) of its Certi-
fying Authority (Ca1), and already believing that all
these keys are what they are, contacts and veri�es its
identity to a veri�er (V) already possessing its own long-
term public and private keys (KpV, KsV) and the public
key (KpCa2) of its Certifying Authority (Ca2), and al-
ready believing that these keys are what they are.

C contacts a Certi�cate Distribution Center (Cdc1)
to obtain a certi�cate signed with Ca1's private key
giving V's public key. C then creates a timestamp (Ts)
and a random symmetric key (DesKey), and sends V

three things:

� An authenticator, consisting of Ts and C's channel
ID ChannelIdC, signed with a DES residue of these
values produced with DesKey. The DES residue is
e�ectively a key-dependent hash.

� A ticket, containing the session public key KspC, a
validity interval ValidityKspC for this key, and
C's User-ID UidC. The ticket is signed with a
hash code produced by H3 and encrypted with C's
long-term secret key KsC. The ticket communicates
KspC and identi�es it as being from C.

� A delegator, consisting of DesKey encrypted with
V's public key, and signed with a hash code pro-
duced by H3 and encrypted with the session secret
key KssC. The delegator communicates DesKey

and indirectly identi�es it as being from C.

After receiving all these things, V contacts a Certi�-
cate Distribution Center (Cdc2) to obtain a certi�cate
signed with Ca2's private key giving C's public key. V

then checks all the information from C, and sends C Ts

encrypted with DesKey to con�rm its receipt of DesKey
and its intent to use it for subsequent communication.

An ISL speci�cation for this protocol follows, includ-
ing modi�cations from its description in [18], similar to
those for the Credentials Initialization protocol, needed
to have it meet all its user-set goals. These modi�ca-
tions include putting the name C in with DesKey and
believing that validity intervals are fresh.

DEFINITIONS:

PRINCIPALS: C,Ca1,Ca2,Cdc1,Cdc2,V;

PUBLIC KEYS: KpC,KpCa1,KpCa2,KpV,KspC;

PRIVATE KEYS: KsC,KsCa1,KsCa2,KsV,KssC;

SYMMETRIC KEYS: DesKey,Rn;

OTHER: ChannelIdC,UidC,ValidityKpC,

ValidityKpV,ValidityKspC,Ts;

ENCRYPT FUNCTIONS: Des,Rsa;

KEYED HASH FUNCTIONS: Hdes;

HASH FUNCTIONS: H3;

Des WITH ANYKEY HASINVERSE Des WITH ANYKEY;

Rsa WITH KsC HASINVERSE Rsa WITH KpC;

Rsa WITH KsCa1 HASINVERSE Rsa WITH KpCa1;

Rsa WITH KsCa2 HASINVERSE Rsa WITH KpCa2;

Rsa WITH KpV HASINVERSE Rsa WITH KsV;

Rsa WITH KssC HASINVERSE Rsa WITH KspC;

INITIALCONDITIONS:

C Received

Des,H3,Hdes,Rsa,

Ts,ChannelIdC,UidC,ValidityKspC,

C,V,DesKey,KpC,KsC,KpCa1,KspC,KssC;

C Believes

(Fresh Ts;

Fresh ValidityKpV;

Fresh DesKey;

Fresh KspC;

PublicKey C Rsa KspC;

PublicKey Ca1 Rsa KpCa1;

PrivateKey C Rsa KssC;

C Recognizes Ca1;

C Recognizes Ts;

SharedSecret C V DesKey;

Trustworthy Ca1;

Trustworthy V);

V Received

Des,H3,Hdes,Rsa,Ts,C,KpV,KsV,KpCa2;

V Believes

(Fresh Ts;

Fresh ValidityKpC;

Fresh ValidityKspC;

PrivateKey V Rsa KsV;

PublicKey V Rsa KpV;

PublicKey Ca2 Rsa KpCa2;

V Recognizes C;

V Recognizes Ca2;

V Recognizes ValidityKspC;

Trustworthy C;

Trustworthy Ca2);

Cdc1 Received

[Ca1,V,ValidityKpV,KpV](H3,Rsa)(KsCa1)

||(PublicKey V Rsa KpV) From Ca1;

Cdc2 Received

[Ca2,C,ValidityKpC,KpC](H3,Rsa)(KsCa2)

||(PublicKey C Rsa KpC) From Ca2;

PROTOCOL:

1. C -> Cdc1: V;

2. Cdc1 -> C:

[Ca1,V,ValidityKpV,KpV](H3,Rsa)(KsCa1)

||(PublicKey V Rsa KpV);

3. C -> V:

<Ts,ChannelIdC>Hdes(DesKey)

||(Fresh DesKey),

[ValidityKspC,UidC,KspC](H3,Rsa)(KsC)

||(PublicKey C Rsa KspC;Fresh KspC),

[{C,DesKey}Rsa(KpV)](H3,Rsa)(KssC)

||(SharedSecret C V DesKey);

4. V -> Cdc2: C;

5. Cdc2 -> V:

[Ca2,C,ValidityKpC,KpC](H3,Rsa)(KsCa2)

||(PublicKey C Rsa KpC);

6. V -> C:

{Ts}Des(DesKey)

||(SharedSecret C V DesKey);

GOALS:

2. C Possesses ValidityKpV,KpV;

C Believes PublicKey V Rsa KpV;

3. V Possesses

Ts,ChannelIdC,ValidityKspC,

UidC,KspC,DesKey;

5. V Possesses ValidityKpC,KpC;

V Believes

(PublicKey C Rsa KpC;

PublicKey C Rsa KspC;

Fresh KspC; Fresh DesKey;

C Possesses DesKey;

SharedSecret C V DesKey;

C Believes SharedSecret C V DesKey);

6. C Believes

(V Possesses DesKey;

V Believes SharedSecret C V DesKey);

Although the initial-conditions modi�cations are simi-
lar to those for the Credentials Initialization protocol,
these modi�cations are much more questionable for the
Authentication protocol.

In the Authentication case, C and V initially believe

ValidityKpV and ValidityKpC are fresh, and use these
\fresh enough" beliefs to believe that each others' pub-
lic keys are what they are. That is not troubling, but
V also uses the dubious belief that ValidityKspC is
\fresh enough" to derive the even more dubious belief,
initially held by C, that KspC was created for the cur-
rent run. It then uses this conclusion to derive that
DesKey is a shared secret between C and V, and uses
this shared-secret belief to derive that DesKey was cre-
ated by C for the current run.

Since SPX session keys are intended to be used for
up to 8 hours [18], KspC is really not \fresh enough";
an attacker having a ticket and the corresponding KssC
could use a new DesKey and V's widely-available public
key to fake an authentication transfer and by doing so
impersonate C.

4. SPX Delegation

The SPX Delegation protocol is very similar to the
SPX Authentication protocol. The only di�erence is
that the delegator:

[{DesKey}Rsa(KpV)](H3,Rsa)(KssC)

||(SharedSecret C V DesKey);

changes to the new delegator:

{DesKey}Rsa(KpV),

{KssC}Des(DesKey)||(PrivateKey C Rsa KssC);

Note that, since a signed message is a pair con-
sisting of a message and a signature, the delegators
in both protocols are pairs whose �rst elements are
{DesKey}Rsa(KpV). The second element of the pair
changes, as does the property associated with this ele-
ment.

The goals for the Delegation protocol are also very
similar to those for the Authentication protocol. The
single new goal

V Believes PrivateKey C Rsa KssC;

replaces the two �nal stage-5 shared-secret goals in the
Authentication protocol.

It turns out, though, that it is impossible to get the
proofs of the desired properties to go through, even
with dubious \fresh enough" assumptions like those
used in the Authentication protocol. Inserting a C in
with the encrypted key in {DesKey}Rsa(KpV) and in

{KssC}Des(DesKey)||(PrivateKey C Rsa KssC)

helps, so that V is able to recognize the encrypted infor-
mation as meaningful, but there is never a reasonable
justi�cation for claiming that

V Believes (SharedSecret V C DesKey);

Because of this, the default goals

V Believes

(C Conveyed

{C,KssC}Des(DesKey)

||(PrivateKey C Rsa KssC));

V Believes

(C Conveyed {C,DesKey}Rsa(KpV));

V Believes

(C Conveyed

Hdes(DesKey,Ts,ChannelIdC)

||(Fresh DesKey));

all fail. As described earlier, it is possible for anyone
holding a valid ticket from C and a corresponding KssC

to create a DesKey and fake a delegation request from
C. Further, anyone to whom C has made a delegation re-
quest will have such a ticket and a corresponding KssC,
and these items will be valid for up to 8 hours. The
SPX Delegation protocol does not prevent, say, bankers
from obtaining their customers' medical records.

5. Summary

This paper has described a tool that makes it pos-
sible to perform careful formal analyses of authentica-
tion properties of cryptographic protocols quickly and
easily. For the three SPX protocols described in [18],
this tool reveals unstated assumptions and a poten-
tial weaknesses in the �rst protocol, and serious weak-
nesses in the other two protocols. These weaknesses
manifest themselves in one case by requiring dubious
initial-conditions assumptions to prove the desired con-
ditions, and in the other case by making it impossible
to prove these desired conditions even with the dubious
assumptions.

References

[1] M. Abadi and M. Tuttle. A semantics for a logic of

authentication. In Proceedings of the 10th Symposium

on Principles of Distributed Computing, pages 201{

216. ACM, August 1991.

[2] S. Brackin. Deciding cryptographic protocol adequacy

with HOL: The implementation. To Appear in The

1996 International Conference on Theorem Proving in

Higher Order Logics, Turku, Finland, August 1996.

[3] S. Brackin. A HOL extension of GNY for automat-

ically analyzing cryptographic protocols. In Proceed-

ings of Computer Security Foundations Workshop IX,

County Kerry, Ireland, June 1996. IEEE.

[4] S. Brackin. An interface speci�cation language for
cryptographic protocols and its translation into HOL.

Submitted to the New Security Paradigms Workshop,
Arrowhead, CA, September 1996.

[5] D. Denning and G. Sacco. Timestamps in key distribu-

tion protocols. CACM, 24(8):533{536, August 1981.
[6] L. Gong. Handling infeasible speci�cations of crypto-

graphic protocols. In Proceedings of Computer Secu-

rity Foundations Workshop IV, pages 99{102, Franco-

nia NH, June 1991. IEEE.
[7] L. Gong, R. Needham, and R. Yahalom. Reasoning

about belief in cryptographic protocols. In Proceedings

of the Symposium on Security and Privacy, pages 234{
248, Oakland, CA, May 1990. IEEE.

[8] M. Gordon and T. Melham. Introduction to HOL:

A Theorem Proving Environment for Higher Order

Logic. Cambridge University Press, Cambridge, UK,

1993.
[9] G. Hammonds, R. Lichota, G. Hird, and J. Wool.

Command center security | proving software correct.
In Proceedings the 10th Annual Conference on Com-

puter Assurance, pages 163{173, Gaithersburg, MD,

June 1995. NIST.
[10] C. Meadows. Using narrowing in the analysis of key

management protocols. In Proceedings of the Sympo-

sium on Security and Privacy, pages 138{147, Oak-

land, CA, May 1989. IEEE.
[11] C. Meadows. A system for the speci�cation and analy-

sis of key management protocols. In Proceedings of the

Symposium on Security and Privacy, pages 182{195,
Oakland, CA, May 1991. IEEE.

[12] C. Meadows. Applying formal methods to the analysis

of a key management protocol. J. Computer Security,
1(1):5{36, 1992.

[13] J. Millen. The interrogator: A tool for cryptographic
protocol analysis. In Proceedings of the Symposium on

Security and Privacy, pages 134{141, Oakland, CA,

May 1984. IEEE.
[14] J. Millen. The Interrogator model. In Proceedings of

the Symposium on Security and Privacy, pages 251{
260, Oakland, CA, May 1995. IEEE.

[15] J. Millen, S. Clark, and S. Freedman. The Interroga-
tor: Protocol security analysis. IEEE Trans. on Soft-

ware Engineering, SE-13(2):274{288, February 1987.
[16] L. Paulson. ML for the Working Programmer. Cam-

bridge University Press, Cambridge, UK, 1993.
[17] P. Syverson and P. van Oorschot. On unifying some

cryptographic protocol logics. In Proceedings of the

Symposium on Security and Privacy, pages 14{28,
Oakland, CA, 1994. IEEE.

[18] J. Tardo and K. Alagappan. SPX: Global authentica-

tion using public key certi�cates. In Proceedings of the
Symposium on Security and Privacy, pages 232{244,

Oakland, CA, 1991. IEEE.

